Previous Sunset Ferry Trip Stabilized
6 of 6 from February 2023

I've been trying to do this for a while - take a timelapse from the front of a ferry near sunset. While I shoot on a tripod, the resulting sequence still needs a lot of stabilization because we are on a boat!

This sequence started at 5:00pm and ended 2076 frames later at 6:43pm. Exposure went from f6.3 at 1/125th of a second to f6.3 at 1/2 of a second. The interval is 3 seconds because I learned from an earlier trip you need more intermediate frames if you want any chance to align between frames.

The script to stabilize is in python and uses OpenCV and the SIFT algorithm to do the image alignment. I use a variety of alignment masks through the sequence so I can exclude things like the clouds and ocean but also other ships moving side to side. This script writes a transforms.trf that ffmpeg can use for stabilization.

Back in Decemeber 2021, I took a ferry trip but hadn't yet figured out how to stabilize it.

import cv2 
import numpy as np
import matplotlib.pyplot as plt
import pprint
import math

f = open("transforms.trf", "w")
f.write("VID.STAB 1
")
f.write("#      accuracy = 15
")
f.write("#     shakiness = 3
")
f.write("#      stepsize = 4
")
f.write("#   mincontrast = 0.200000
")
f.write("Frame 1 (List 0 [])
")

img1 = cv2.imread('DSC_4877_FerryHg.jpg')  
mask = cv2.imread('mask2.png', cv2.IMREAD_GRAYSCALE)
Mask_5182 = cv2.imread('Mask_5182.png', cv2.IMREAD_GRAYSCALE)
mask_5725 = cv2.imread('mask_5725.png', cv2.IMREAD_GRAYSCALE)
mask_5885 = cv2.imread('mask_5885.png', cv2.IMREAD_GRAYSCALE)
mask_6670 = cv2.imread('mask_6670.png', cv2.IMREAD_GRAYSCALE)


currentMask = mask

img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

#sift
sift = cv2.SIFT_create()

keypoints_1, descriptors_1 = sift.detectAndCompute(img1,mask)

for n in range(2,2064):
    print("Frame " + str(n))
    img2 = cv2.imread("DSC_{:04d}_FerryHg.jpg".format(4876 + n)) 
    img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

    if ( (4876 + n) == 5182 ):
        currentMask = Mask_5182

    if ( (4876 + n) == 5725 ):
        currentMask = mask_5725
    
    if ( (4876 + n) == 5885 ):
        currentMask = mask_5885

    if ( (4876 + n) == 6670 ):
        currentMask = mask_6670

    keypoints_2, descriptors_2 = sift.detectAndCompute(img2,currentMask)

    #feature matching
    bf = cv2.BFMatcher(cv2.NORM_L1, crossCheck=True)

    matches = bf.match(descriptors_1,descriptors_2)
    matches = sorted(matches, key = lambda x:x.distance)

    countPositions = 0
    listOfPoints = ""
    for idx, val in enumerate(matches):
        distance = math.sqrt( (keypoints_2[val.trainIdx].pt[0]-keypoints_1[val.queryIdx].pt[0]) *
                         (keypoints_2[val.trainIdx].pt[0]-keypoints_1[val.queryIdx].pt[0]) + 
                        ( keypoints_2[val.trainIdx].pt[1]-keypoints_1[val.queryIdx].pt[1]) *
                         (keypoints_2[val.trainIdx].pt[1]-keypoints_1[val.queryIdx].pt[1] ) )

        if ( val.distance > 299 and idx > 10 ):
            continue
    
        print("    " + str(idx) + " " + str(distance) + " " + str(val.distance) +" (" +
                 str(keypoints_1[val.queryIdx].pt[0]) + "," + str(keypoints_1[val.queryIdx].pt[1]) +
                 ") -> (" + str(keypoints_2[val.trainIdx].pt[0]) + "," +
                 str(keypoints_2[val.trainIdx].pt[1]) + ")" )
        if( countPositions > 0 ):
            listOfPoints = listOfPoints + ","

        # https://github.com/georgmartius/vid.stab/blob/master/src/serialize.c
        #   if(fscanf(f,"(LM %hi %hi %hi %hi %hi %lf %lf", &lm.v.x,&lm.v.y,&lm.f.x,&lm.f.y,&lm.f.size,
        #    &lm.contrast, &lm.match) != 7) {
        # LM = Local Motion
        # Sample: (LM 0 0 922 424 224 0.507735 0.263512)

        listOfPoints = listOfPoints + "(LM {:0.0f} {:0.0f} {:0.0f} {:0.0f} {:0.0f} {:5.3f} {:5.3f})".format(
                -(keypoints_2[val.trainIdx].pt[0]-keypoints_1[val.queryIdx].pt[0]),
                -(keypoints_2[val.trainIdx].pt[1]-keypoints_1[val.queryIdx].pt[1]),
                keypoints_1[val.queryIdx].pt[0], keypoints_1[val.queryIdx].pt[1], 
                48,
                (300.0 - val.distance) / 300.0 , 0.6 - (300.0 - val.distance) / 1000.0)
        countPositions = countPositions + 1


    f.write("Frame {:d} (List {:d} [{}])".format(n,countPositions,listOfPoints))
    img1 = img2
    keypoints_1 = keypoints_2
    descriptors_1 = descriptors_2


f.close()



Camera: Nikon D850
Tag: sunset, ferry, time lapse
Larger image: 2000 x 1333
Raw image: 6192 x 4128

John Harvey Photo > Blogs for 2024 to 2005 > February 2023 > Sunset Ferry Trip Stabilized

Leave a Comment

Some HTML allowed: <b>, <code> <em> <i> <strike> <strong>, but most isn't.  Text length is limited.  Comments from first time authors will be reviewed before being posted. Comments with swearing or painfully poor spelling will probably be rejected.

Last Modified Sunday, April 23rd, 2023 at 10:56:02. Edit
Copyright and Contact Information.